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1 Introduction

The thermohaline instability, sometimes also called saltfinger instability, is a well-known instability in
oceanography. A warm layer of saltwater on top of a cold body of freshwater may be dynamically stable,
if the density of the saltwater is smaller than that of the freshwater because of its higher temperature.
However, if an element of the saltwater is perturbed into the freshwater, it may lose its heat faster than its
salt, leading to an increase in density and an exponentially increasing perturbation. This thermohaline
instability leads to a complete mixing of the two fluids. Because this instability depends on the timescales
of two diffusion processes, it is also sometimes called double-diffusive instability.
In the case of stars, the role of the salt is played by the molecular weight. A layer with higher molecular
weight on top of a layer with smaller weight may be dynamically stable, but subject to a similar double-
diffusive instability. Classical papers in the astrophysical context are Ulrich (1972) and Kippenhahn
et al. (1980, =KRT80).

2 The instability in the picture of KRT80

The instability starts from a boundary layer separating the two layers, with higher molecular weight µ on
top. A front of a molecular weight gradient expands into the homogenous region below, with decreasing
velocity (proportional to the decreasing gradient), leaving behind a (nearly) homogenous layer. This can
be described as a global mixing process for the average concentration c̄ of heavy elements in a spherical
shell ∆r

dc̄

dt
∝

d∆r

dt
∝ w ∝ c̄ (1)

with expansion velocity w and a solution of the nature c̄ ∝ exp(−t/τth). This behavior is partly analogous
to a diffusion process, where an inhomogenous mixture asymptotically approaches a homogenous state
in the available volume.
KRT80 consequently define a diffusion coefficient Dth, written here in slightly different notation used by
more recent papers
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and the thermal diffusivity α

α =
4acT 3

3cPκρ2
(4)

and the abbreviation
1

R0

=

[

−∇µ

∇ad −∇

]

. (5)

The other symbols T, p, ρ, cp have their usual thermodynamic meaning; κ is the absorption coefficient
(cm2/g). We note that the above formulation assumes an ideal gas with (at least locally) constant
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ionization. The more general approach (also discussed in KRT80) involves additional factors which
ensure that only the gradient due to changing composition enters in ∇µ. Cth is a constant, which has
the value 12 in KRT80. However, values more than two orders of magnitude larger have also been used
in the literature.
From this diffusion coefficient KRT80 derive the timescale

τth ≈
L2

Dth

, (6)

which depends on the geometrical size L of the involved regions. In their derivations and in the specific
examples KRT80 treat this as a global mixing process involving sizeable fractions of the star. They never
define or use any diffusion velocities, which could be applied locally like a molecular diffusion velocity.
One could, however, derive an estimate of an average velocity related to this expansion process as

vth =
L

τth
=

Dth

L
. (7)

Comparing this with the calculation of a local diffusion velocity as in Deal et al. (2013, =DDVV13) and
earlier papers of this group

vth = Dth

∂ ln c

∂r
= −

Dth

Hp

∂ ln c

∂ ln p
(8)

we can conclude that these estimates agree for a typical length scale (size of “blobs”, mean free path),

L =
Hp

∂ ln c/∂ ln p
(9)

which in our numerical example below means a length scale of the pressure scale height or larger.
The whole discussion in this section implies that the thermohaline instability is a one-time event, which
leads from an unstable stratification to a homogenous mixture with a calculable timescale. One example,
where this scenario might be applicable, is the impact of 0.03 Mjup object on a star discussed in Théado
& Vauclair (2012).

3 Application of the thermohaline instability in DDVV13

We see several possible problems in the way the instability is applied and treated in Deal et al. (2013),
and partially also in some earlier papers of this group.

3.1 Local vs. global mixing

As discussed above the thermohaline instability leads to a global mixing with no well-defined local
diffusion velocity. Adding vth acting on the bulk material and the molecular diffusion velocity v12, which
is a relative velocity between a heavy atom and the main bulk material, different for each species can
be regarded as a technical trick to facilitate computations. It is, however, really meaningful only in the
two limiting cases, where either of the two processes is negligible. The analogy with convection, where
this method of combining “convective mixing” and diffusion is also sometimes used, is misleading: the
mixing coefficient in the dynamically unstable convection zone is always orders of magnitude larger than
any molecular diffusion, and it is zero outside the cvz (+ overshooting region). A combination of the
two mixing processes therefore has never any practical importance.

3.2 Definition of the thermohaline diffusion coefficient

Wide variations of the thermohaline diffusion coefficients (e.g. by varying the constant Cth or other
means) have been used in the literature. DDVV13 state that their coefficient is calibrated with numer-
ical simulations by Traxler et al. (2011). However, the coefficient determined in that paper is a purely
empirical fit without physical basis. Moreover, the simulations are carried out for Prandtl and Lewis
numbers of ≈ 0.1, whereas in the astrophysical context (see below) these numbers are ≈ 10−7 − 10−8,
requiring an extrapolation of a numerical fit over seven orders of magnitude. Although Traxler et al.
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(2011) use a scaling law for the transfer to astrophysical conditions, this relies on the validity of the
asymptotic behavior suggested by their results (Wachlin et al. 2011).

The thermohaline instability applies only in a region where ∇ < ∇ad + ∇µ (with ∇µ < 0). This is
the limit of dynamical instability in case of a negative µ gradient (the Ledoux criterion for convection),
which would lead to very rapid mixing. The expression in brackets in eq. 2 (= 1/R0) goes to the limit
1, when approaching this critical gradient. In stark contrast to this behavior, DDVV13 replace 1/R0

by an expression, which has a singularity at the limit of the dynamically stable region. This virtually
assures an instability at the boundary for arbitrary small µ gradients and cannot be physically sound.
We therefore use the KRT80 formulation in our numerical estimates.

3.3 Thermohaline instability as a continuous process

DDVV13 – and earlier papers by the same group as well as other authors – make a bold step from a
one-time instability to a process continuous in space and time by combining the thermohaline instability
with accretion and molecular diffusion. In addition to the issues discussed above, this introduces new
questions about timescales, which we discuss below in our numerical example.

Table 1: Properties of G29-38

stellar parameters
effective temperature [K] 11820 ± 100
surface gravity log g [cm/s2] 8.40 ± 0.10
data at the bottom of the convection zone
fractional depth log(Mcvz/M) -13.96
pressure [dyn/cm2] 8.43 108

density [g/cm3] 6.93 10−5

temperature [K] 77040
pressure scale height Hp [cm] 5 104

average charge of hydrogen Z1 0.99
average charge of calcium Z2 3.24
current abundance of calcium ccvz 2.63 10−7

molecular diffusion coefficient D12 [cm2/s] 4.027
molecular diffusion velocity v12 [cm/s] 6.11 10−3

molecular diffusion timescale [s] 9.07 106

thermal diffusivity α [cm2/s] 7 107

Lewis number D12/α 5.75 10−8

inverse Lewis number 1.74 107

4 A numerical example

In the following, we adopt the scenario and the equations used in DDVV13, but replace the singularity
in the diffusion coefficient with the, in our view, physically more meaningful definition of KRT80. We
then have

Dth = Cth α

[

−∇µ

∇ad −∇

]

= Cth α
1

R0

(10)

with Cth = 12. For a trace element with concentration c ≪ 1, ideal gas equation of state and constant
ionization it can be shown that

d lnµ

d ln p
=

[

A2

A1

−
Z2 + 1

Z1 + 1

]

dc

d ln p
(11)

with A,Z the atomic masses and charges of element 1 and 2. The thermohaline diffusion coefficient then
is

Dth =
Cth α

∇ad −∇

[

A2

A1

−
Z2 + 1

Z1 + 1

]

dc

d ln p
(12)
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and the diffusion velocity

vth = Dth

d ln c

dr
=

Dth

Hp

d ln c

d ln p
=
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1

∇ad −∇

[

A2
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]

c

(

d ln c
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)2

. (13)

Another quantity of interest is the timescale for the growth of the instability in the linear approximation
(KRT80)

τgrowth =
L2

α

∇ad +∇µ −∇

∇µ

(14)

The molecular diffusion coefficient D12 and the velocity v12 are calculated as in Koester (2009).
The numerical example we use is the variable DA G29-38, with the parameters recently determined by
Xu et al. (2013). The heavy element considered is Ca. Table 1 collects relevant data for the star as
well as at the bottom of the convection zone (cvz). Our scenario is the following: the star starts with a
homogenous pure hydrogen envelope. When accretion of calcium (taken as representative heavy element,
because it is most often observed) from circumstellar matter starts, the abundance in the cvz (assumed
to be homogeneous because of extremely rapid mixing) builds up until a steady state between accretion
and diffusion below the cvz is reached. We assume that the current abundance of ccvz is a steady state,
since it has not changed since the detection of Ca in 1997.
With a vanishing µ gradient, eq. 2 predicts Dth = 0 everywhere, except direct at the border of the
stability region, where it is undefined. This is an artifact of assuming an infinitely sharp transition,
which does not exist in nature. We assume that convective overshoot, molecular diffusion, and possibly
other processes (in this particular case e.g. the pulsations) lead to a transition region of width β Hp, where
the concentration changes from ccvz to zero. We evaluate the conditions for thermohaline instability in
the middle of this transition region. We thus have

dc

d ln p
−→

ccvz
β

(15)

For β ≈ 1 (see eq. 9 above) and the low observed Ca abundances in white dwarfs, the µ gradient ∇µ

is thus extremely small and Schwarzschild and Ledoux limits practically agree. The difference ∇ad −∇

increases rapidly across the boundary to ≈ 0.2 in a small fraction of Hp and stays near or above this
value throughout the hydrogen envelope. We use this value as representative for the transition region.
Inserting the numbers from the model we find

vth = 6.237 106
ccvz
β2

(16)

Whereas the molecular diffusion velocity is independent of c, since the concentration gradient term is
always negligible compared to the gravitational settling terms, the “thermohaline diffusion velocity”
approaches zero for the small abundances at the beginning of an accretion event. Even for an abundance
of c = 10−10 and β ≈ 1, vth is smaller than v12 by a factor of 9.
A similar conclusion can be reached from the excitation timescale in the linear approximation of the
instability. For the same conditions as above we obtain

τgrowth = 1.95 109 s (17)

more than a factor of 100 larger than the molecular diffusion timescale. Finally the simple but most
important question is if a thermohaline instability could be excited. The condition is that R0 should be
smaller than the inverse Lewis number 1/Le, since otherwise particles of the perturbation element could
be exchanged with the surroundings more rapidly than heat. In the situation discussed above we find

R0 = 2109 ≫ 1/Le = 1.74 107. (18)

The conclusion does not depend on the choice of the thickness of the transition region (β). As long as it
is finite there will always be a regime in the beginning of the accretion process where the timescale for
molecular diffusion is much shorter than for the build-up of a significant µ discontinuity.
We thus conclude that in the beginning of the accretion episode (molecular) diffusion equilibrium near
the convective boundary is always reached before the thermohaline instability becomes significant. As a
next step we have therefore assumed that

ρ c v12 = const (19)
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Figure 1: Variation of log(R0) through the hydrogen envelope below the convection zone for different
concentrations c (black, from top to bottom log(ccvz) = −10.0,−8.0,−6.6,−5.0) and comparison with
the inverse Lewis number (red). The bumps near logMr/M = −8.5 (and similar in Fig. 2) are caused by
a nearly constant c and near zero gradient in that region. The concentration log(ccvz) = −6.6 corresponds
to the currently observed abundance in G29-38, −5.0 is the total heavy element abundance, one of the
highest currently known in any DA
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Figure 2: Variation of (logarithmic) diffusion velocities through the hydrogen envelope. Red: molecular
diffusion; black: thermohaline diffusion for log(ccvz) = −5.0,−6.6,−8.0,−10.0 from top to bottom.
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Figure 3: Steady state abundance stratification for molecular diffusion flux F12 alone (red), and for
accretion fluxes 5 - 1000 times higher, at the same cvz abundance of -5.0. No steady state solution with
thermohaline mixing exists throughout the hydrogen zone.

Figure 4: Total accretion fluxes for DAZ white dwarfs derived using the standard assumption of molecular
diffusion. Note the constant range over a very large range of stellar parameters and observed Ca or Si
abundances from 10−12 to 10−4.5. The open triangles in the lower right show Si supported by radiative
levitation.
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and calculated the thermohaline velocities and timescales for the resulting c stratification. Figure 1
shows the results for the comparison of R0 with the inverse Lewis number. For steady state abundances
slightly smaller than the currently observed value for G29-38 – which is one of the largest observed Ca
abundances – thermohaline diffusion does not occur anywhere in the hydrogen envelope. If we accept
the use of the local combination of molecular and thermohaline diffusion we would conclude, that for the
highest abundances a small effect just below the convection zone and affecting a fraction of 10−4.5 of the
total hydrogen mass is possible. Since a thermohaline mixing velocity adds to the molecular diffusion
velocity, the time needed to reach a stationary state at the bottom of the cvz for a given accretion flow
is shorter than with molecular diffusion alone, and the equilibrium abundance in the cvz will be smaller.

5 No steady state solution possible with thermohaline mixing

A steady state solution (mass flux F of trace element constant over all layers and equal to the external
accretion flux) is governed by the equation

ρc
A2

A1

v = ρ
A2

A1

[

Cth α

Hp

1

∇ad −∇

[

A2

A1

−
Z2 + 1

Z1 + 1

] (

dc

d ln p

)2

−
D12

Hp

(

dc

d ln p

)

+ v12 c

]

= F (20)

where the first term in the brackets is the thermohaline velocity, the second the molecular diffusion
velocity from the concentration gradient (always negligible here), and the third the gravitational settling.
This equation can be integrated using the abundance (c(cvz) in the convection zone as starting value and
the mass flux F as free parameter. F = ρv12cA2/A1 = F12 with the quantities evaluated at the bottom
of the cvz corresponds to the standard equilibrium solution, where the transport is by molecular diffusion
alone (red curve in Fig. 3). We have also used larger values for the flux as claimed to be necessary by
DDVV13. As one can already see from eq. 20, for F ≫ F12 the concentration gradient will get more
negative for ever larger fluxes, inevitably leading to c = 0. For smaller F a few times F12 the solution
for the gradient always becomes complex. There exists no real stationary solution for F > F12.
We conjecture that the consequence is that the abundance in the cvz will continue to rise until molecular
diffusion can carry the whole flux and “standard” equilibrium is achieved. This can only be demonstrated
by real numerical integrations like DDVV13, but continued to the final steady state.

6 Astrophysical support

Since there are many open question about the application of the thermohaline instability in the astro-
physical context, several authors have tried to find support through the explanation of astrophysical
phenomena like the stellar abundance pattern on the giant branches. This has met with only limited
success (Cantiello & Langer 2010; Wachlin et al. 2011; Théado & Vauclair 2012), and often an increase
of the mixing efficiency by large factors, or invoking additional mixing processes, is required to get agree-
ment with observations.

DDVV13 emphasize prominently in abstract and conclusions that their calculations can explain the
differences in the maximum accretion rates derived for DA and DB white dwarfs. There is, however,
another plausible explanation. In the models for helium-rich DB stars, the bottom of the convection zone
reaches mass densities between 1 and 1000 g/cm3. This range includes the regime of pressure ionization
in helium. In the equation of state we use (Saumon et al. 1995) this regime is not treated explicitely but
bridged by a smooth interpolation. The quantity most important for the convection zone calculation is
the adiabatic gradient, since the structure is almost exactly adiabatic throughout the zone. Numerical
experiments show that because of the cumulative effect of the inward integration a very small change
in the adiabatic gradient can change the mass in the cvz by one or two orders of magnitude. As is
demonstrated by Fig. 23 in Saumon et al. (1995) the adiabatic gradient is significantly different between
various EOS calculations. It can also show irregular behavior, which is probably not realistic but caused
by the numerical calculation of the necessary second derivatives, if the EOS is determined by a Free
Energy minimization method. As a consequence, absolute values of diffusion timescales and diffusion
fluxes in cool DBs depend on the details of the EOS and may be quite uncertain. Fortunately, the relative
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values for different elements, which are important for the determination of the chemical composition of
the accreted material, are much less affected.
On the other hand, the large study of metal pollution in DA white dwarfs of Koester et al. (2014) provides
an argument that the current use of molecular diffusion only for the derivation of accretion fluxes is
correct. Fig. 4 demonstrates, that the range of derived accretion rates remains the same between 105.5

to 108.5 g/s over the whole observed range from Teff 5000 to 25000 K. This range spans cooling times
from 20Myr to 2Gyr, diffusion timescales from days to 100000 yr, from purely radiative envelopes to
very deep convection zones, and observed Ca abundances for 10−12 to 10−6. It is highly unlikely that
such a consistent result would be achieved with the inclusion of a thermohaline mixing description as in
DDVV13.

7 Conclusions

We do not doubt that the thermohaline instability may play an important role in astrophysics. Possible
examples are the cases discussed in KRT80 with differences of the molecular weight of the order of 1,
or catastrophic events like the sudden infall of a 0.03Mjup object on a star (Théado & Vauclair 2012).
However, the validity of extending the instability to a continuous process, the mixing with molecular
diffusion, and the extrapolation of mixing efficiencies over 7 orders of magnitude in Lewis numbers, is
not obvious.
Concerning the accretion on white dwarfs, with a gradual build-up of heavy element abundances and µ
differences of 10−6 or smaller, the situation is quite different. We respect the important work of DDVV13
(and earlier papers), which has brought back this almost forgotten effect and demonstrated the need of
further discussions and study. We do not claim that we know the final answer to this problem. The
aim of this study is to present an alternative view of this scenario; further studies, calculations, and
discussions will be necessary to come to a conclusion. With our current state of knowledge and the
estimates presented above, we think that thermohaline convection does not play an important role in
accreting white dwarfs. Although we do not know the details of the DDVV13 calculations, it is plausible,
that the different conclusions originate from their use of infinitely sharp transitions between regions with
different molecular weights, and, most importantly, from their use of a singular (infinitely large) diffusion
coefficient at the border of the dynamically stable region. This guaranties an instability for any finite µ
difference, but is not physically realistic.
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